Numerical Methods for Strong Solutions of Stochastic Differential Equations: an Overview
نویسندگان
چکیده
This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations (SDEs). We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications (section 1), and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes (section 2). In section 3 we present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods which preserve the underlying structure of the problem. In sections 4 and 5 we present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, in section 6 we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable stepsize implementations based on various types of control.
منابع مشابه
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملComputational solution of stochastic differential equations
Stochastic differential equations (SDEs) provide accessible mathematical models that combine deterministic and probabilistic components of dynamic behavior. This article is an overview of numerical solution methods for SDEs. The solutions are stochastic processes that represent diffusive dynamics, a common modeling assumption in many application areas. We include a description of fundamental nu...
متن کامل